• Triplet state CPL active helicene-dithiolene platinum bipyridine complexes
    T. Biet, T. Cauchy, Q. Sun, J. Ding, A. Hauser, P. Oulevey, T. Bürgi, D. Jacquemin, N. Vanthuyne, J. Crassous and N. Avarvari
    Chemical Communications, 53 (66) (2017), p9210-9213
    DOI:10.1039/C7CC05198K | unige:96312 | Abstract | Article HTML | Article PDF | Supporting Info
 
Chiral metal dithiolene complexes represent a family of chiral precursors, which can give rise to molecular materials with properties resulting from the interplay of chirality with conductivity, magnetism, and photophysics. We describe herein the first examples of chiral metal diimine dithiolene complexes, by the use of a platinum(II) centre coordinated by 2,2’-bipyridine and helicene-dithiolene ligands. Straightforward synthesis of racemic and enantiopure complexes allows the preparation of luminescent Pt(bipy) [4] and [6]helicene compounds for which the solid-state structure was determined as well. TD-DFT calculations support the assignment of the low energy bands observed in the UV-vis absorption spectra as mixed metal-ligand-to-ligand charge transfer transitions and confirm that the emission band results from the T1 excited state. Interestingly the enantiopure [6]helicene complexes show CPL activity at room temperature in acetonitrile solutions with anisotropy factors of 3×10-4.
Introduction of heterocycles in the helical skeleton of helicenes allows modulation of their redox, chiroptical and photophysical properties. Herein, we describe the straightforward preparation and structural characterization by single crystal X-ray diffraction of thiadiazole-[7]helicene, which has been resolved into (M) and (P) enantiomers by chiral HPLC, together with its S-shaped double [4]helicene isomer, as well as the smaller congeners thiadiazole-[5]helicene and benzothiadiazole-anthracene. A copper(II) complex with two thiadiazole-[5]helicene ligands has been structurally characterized and it shows the presence of both (M) and (P) isomers coordinated to the metal centre. The emission properties of the unprecedented heterohelicenes are highly dependent on the helical turn, as the [7]- and [5]helicene are poorly emissive, whereas their isomers, that is, the S-shaped double [4]helicene and thiadiazole-benzanthracene, are luminescent, with quantum efficiencies of 5.4% and 6.5%, respectively. DFT calculations suggest a quenching of the luminescence of enantiopure [7]helicenes through an intersystem crossing mechanism arising from the relaxed excited S1 state.
  
  • Structural, Photophysical and Magnetic Properties of Transition Metal Complexes Based on the Dipicolylamino-chloro-1,2,4,5-tetrazine Ligand
    I. Nazarenko, F. Pop, Q. Sun, A. Hauser, F. Lloret, M. Julve, A. El-Ghayoury and N. Avarvari
    Dalton Transactions, 44 (19) (2015), p8855-8866
    DOI:10.1039/c5dt00550g | unige:72655 | Abstract | Article HTML | Article PDF | Supporting Info
The ligand 3-chloro-6-dipicolylamino-1,2,4,5-tetrazine (Cl-TTZ-dipica) 1, prepared by the direct reaction between 3,6-dichloro-1,2,4,5-tetrazine and di(2-picolyl)-amine, afforded a series of four neutral transition metal complexes formulated as [Cl-TTZ-dipica-MCl2]2, with M = Zn(II) 2a, Cd(II) 2b, Mn(II) 2c and Co(II) 2d, when reacted with the corresponding metal chlorides. The dinuclear structure of the isostructural complexes was disclosed by single crystal X-ray analysis, clearly indicating the formation of [MII-(m-Cl)2MII] motifs and the involvement of the amino nitrogen atom in semi-coordination with the metal centers, thus leading to distorted octahedral coordination geometries. Moreover, the chlorine atoms, either coordinated to the metal or as substituent on the tetrazine ring, engage respectively in specific anion-p intramolecular and intermolecular interactions with the electron poor tetrazine units in the solid state, thus controlling the supramolecular architecture. Modulation of the emission properties is observed in the case of the Zn(II) and Cd(II) complexes when compared to the free ligand. A striking difference is observed in the magnetic properties of the Mn(II) and Co(II) complexes. An antiferromagnetic coupling takes place in the dimanganese(II) compound (J = -1.25 cm-1) while the Co(II) centers are ferromagnetically coupled in the corresponding complex (J = +0.55 cm-1), the spin Hamiltonian being defined as H = -JSA.SB.
 
Bis(thiomethyl)- and bis(thiohexyl)-tetrathiafulvalene-bromo-benzothiadiazoles, containing electron donor tetrathiafulvalene (TTF) and electron acceptor benzothiadiazole (BTD) units, have been prepared by Stille coupling reactions between the TTF-SnMe3 precursors and BTD-Br2. In another series of experiments, TTF-acetylene-BTD compounds have been synthesized by Sonogashira coupling between either TTF-acetylenes and BTD-Br2 in low yields, or TTF-iodine and BTD-acetylene in moderate yields. In the compound TTF-C≡C-BTD the TTF and BTD units are coplanar in the solid state, as shown by the single crystal X-ray structure, and there is segregation in the packing between the donor and acceptor units. All the derivatives have good electron donor properties, as determined by cyclic voltammetry measurements, and they can also be reversibly reduced thanks to the presence of the BTD moiety. UV-visible spectroscopy and photophysical investigations show the presence of an intramolecular charge transfer (ICT) band and an emission band originating from the charge transfer. Both the absorption and the emission are modulated by the substitution scheme and the insertion of the acetylenic bridge.
  
  • Tetrathiafulvalene-1,3,5-triazines as (Multi)Donor-Acceptor Systems with Tunable Charge Transfer: Structural, Photophysical, and Theoretical Investigations
    F. Pop, F. Riobé, S. Seifert, T. Cauchy, J. Ding, N. Dupont, A. Hauser, M. Koch and N. Avarvari
    Inorganic Chemistry, 52 (9) (2013), p5023-5034
    DOI:10.1021/ic3027336 | unige:27865 | Abstract | Article HTML | Article PDF
Palladium-catalyzed cross-coupling reactions between chlorinated 1,3,5-triazines (TZ) and tetrathiafulvalene (TTF) trimethyltin derivatives afford mono- and C3 symmetric tris(TTF)-triazines as donor–acceptor compounds in which the intramolecular charge transfer (ICT) is modulated by the substitution scheme on TTF and TZ and by chemical or electrochemical oxidation. The TTF-TZ-Cl2 and (SMe)2TTF-TZ-Cl2 derivatives show fully planar structures in the solid state as a consequence of the conjugation between the two units. Electrochemical and photophysical investigations, supported by theoretical calculations, clearly demonstrate that the lowest excited state can be ascribed to the intramolecular charge transfer (ICT) π(TTF)→π*(TZ) transition. The tris(TTF) compound [(SMe)2TTF]3-TZ shows fluorescence when excited in the ICT band, and the emission is quenched upon oxidation. The radical cations TTF+• are easily observed in all of the cases through chemical and electrochemical oxidation by steady-state absorption experiments. In the case of [(SMe)2TTF]3-TZ, a low energy band at 5000 cm–1, corresponding to a coupling between TTF+• and TTF units, is observed. A crystalline radical cation salt with the TTF-TZ-Cl2 donor and PF6– anion, prepared by electrocrystallization, is described.
  • Tetrathiafulvalene-s-tetrazine: versatile platform for donor-acceptor systems and multifunctional ligands
    F. Pop, J. Ding, L.M. Lawson Daku, A. Hauser and N. Avarvari
    RSC Advances, 3 (2013), p3218-3221
    DOI:10.1039/c3ra21702g | unige:27369 | Abstract | Article HTML | Article PDF
 
The structurally characterized tetrathiafulvalene-1,2,4,5-tetrazine donor–acceptor system shows redox tuneable intramolecular charge transfer, solvatochromic and electrochromic behaviour. Attachment of a dipicolyl-amine chelating unit affords a multifunctional ligand, which allows the preparation of the ZnCl2 complex in which an anion-π interaction is seen.
  
  • Tetrathiafulvalene-Benzothiadiazoles as Redox-Tunable Donor-Acceptor Systems: Synthesis and Photophysical Study
    F. Pop, A. Amacher, N. Avarvari, J. Ding, L.M. Lawson Daku, A. Hauser, M. Koch, J. Hauser, S.-X. Liu and S. Decurtins
    Chemistry - A European Journal, 19 (7) (2013), p2504-2514
    DOI:10.1002/chem.201202742 | unige:26401 | Abstract | Article PDF
Electrochemical and photophysical analysis of new donor–acceptor systems 2 and 3, in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular-charge-transfer (ICT) π(TTF)→π*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3, the intensity of the 1ICT band is substantially higher compared to that in compound 2. The corresponding CT fluorescence is also observed in both cases. The radical cation TTF+. is easily observed through chemical and electrochemical oxidation by performing steady-state absorption experiments. Interestingly, compound 2 is photo-oxidized under aerobic conditions.
  • C 3 symmetric tris(phosphonate)-1,3,5-triazine ligand: homopolymetallic complexes and its radical anion
    C. Maxim, A. Matni, M. Geoffroy, M. Andruh, N.G.R. Hearns, R. Clérac and N. Avarvari
    New Journal of Chemistry, 34 (10) (2010), p2319-2327
    DOI:10.1039/C0NJ00204F | unige:14779 | Abstract | Article HTML | Article PDF
 
The ligand 2,4,6-tris(dimethoxyphosphonate)-1,3,5-triazine L has been synthesized and its single crystal X-ray structure determined. The occurrence of P=O···π intermolecular interactions, suggested by the short P=O··· triazine distances of 3.16–3.35 Å, is observed. The electrochemical reduction of the ligand shows its electron acceptor character by the formation of a stable radical anion. The hyperfine structure observed in the EPR spectra, combined with a theoretical DFT study, evidences the full delocalization of the unpaired electron mainly on the triazine core, with some participation of the phosphonate groups. Theoretical calculations are in agreement with the experimental values of the hyperfine coupling constants of 11.81 G for Aiso–31P and 1.85 G for Aiso–14N. Homopolymetallic complexes, formulated as {L[Cu(hfac)2]3} (1), 1∞{L2[Co(hfac)2]3} (2) and 1∞{L2[Mn(hfac)2]3} (3) (hfac = hexafluoroacetylacetonate), have been synthesized and structurally characterized.
  
  • Bis(tetrathiafulvalenes) with aromatic bridges: electron delocalization in the oxidized species through EPR and theoretical studies
    F. Riobé, N. Avarvari, P. Grosshans, H. Sidorenkova, T. Berclaz and M. Geoffroy
    Physical Chemistry Chemical Physics, 12 (2010), p9650-9660
    DOI:10.1039/C001014F | unige:14784 | Abstract | Article HTML | Article PDF
A series of bis(TTF) donors containing aromatic linkers between the two TTF units has been synthesized in order to investigate on the electronic structure of the oxidized species from an experimental and theoretical point of view. A mono(TTF)-pyridine compound has been also prepared and characterized by single-crystal X-ray diffraction analysis. Oxidation of a solution of 2,6-bis(TTF)-pyridine (TTF-Pyr-TTF) or of 1,3-bis(TTF)-benzene (TTF-Bz-TTF) in CH2Cl2 with less than 0.1 equivalent of [Cp2Fe][PF6] gives rise to a seven-line EPR spectrum consistent with the hyperfine structure calculated by DFT for the corresponding radical monocation. Increasing the proportion of oxidant leads to a four-line hyperfine structure, similar to the quartet pattern observed after oxidation of mono(TTF)-pyridine (Pyr-TTF) or mono(TTF)-benzene (Bz-TTF). In good accordance with the very weak value of J calculated by DFT for the dicationic biradicals these four-line spectra are attributed to [2,6-bis(TTF)-pyridine]2+ and [1,3-bis(TTF)-benzene]2+. Similar experimental results are obtained for 1,4-bis(TTF)-benzene. In this case, however, electrochemical oxidation leads to the monoradical at low potential and to the diradical at higher potential, while only the diradical could be observed by electrochemical oxidation of 2,6-bis(TTF)-pyridine or of 1,3-bis(TTF)-benzene. 
  • Rigid Bis(tetrathiafulvalenes) Doubly Bridged by Phosphino Groups and Derivatives: Synthesis and Intramolecular Mixed Valence State
    I. Danila, F. Biaso, H. Sidorenkova, M. Geoffroy, M. Fourmigué, E. Levillain and N. Avarvari
    Organometallics, 28 (13) (2009), p3691-3699
    DOI:10.1021/om900107y | unige:3551 | Abstract | Article HTML | Article PDF
 
The synthesis and structural characterization of the λ5-bis(phosphine sulfide) and the bimetalliccomplexes bis[phosphino-M(CO)5] (M = Mo, W) of the 3,4-dimethyltetrathiafulvalene (ortho-DMTTF)-based rigid dimer (PPh)2(o-DMTTF)2, containing a central 1,4-dihydro-1,4-diphosphi-nine ring, are described. Single-crystal X-ray analyses have been performed for the trans isomers(PhPX)2(o-DMTTF)2 (X = S, Mo(CO)5, and W(CO)5) and for the cis isomer [PhPW(CO)5]2-(o-DMTTF)2. Planar or slightly folded boat-type conformations are observed for the central six-membered ring, together with different packings characterized by short intermolecular S · · · Scontacts. The optical signature of the oxidized species in the case of the free ligand (PPh)2-(o-DMTTF)2 has been evidenced by UV-vis spectroelectrochemistry measurements. SolutionEPR measurements on the radical cation species of (PPh)2(o-DMTTF)2 definitely assess the fulldelocalization of the unpaired electron over both electroactive TTF units, with an associatedcoupling of 0.48 G with 12 equivalent protons. The EPR signal of the dication proves the radicalnature of this species, in favor of a triplet ground state. The radical cation of the cis-[PhPW(CO)5]2-(o-DMTTF)2 isomer was also investigated by EPR, for which the observed hyperfine structuredemonstrates the extended delocalization of the electron, together with a larger coupling constantwith the phosphorus nuclei. DFT calculations for the radical cation of (PPh)2(o-DMTTF)2 afford aboat-type conformation for the central ring and a SOMO consistent with a full delocalization of theelectron over both TTF units. Moreover, the calculations indicate that in the case of the dication of(PPh)2(o-DMTTF)2 the triplet state is more stable by 11.7 kcal mol-1 than the singlet state.
  
  • Mono- and Bis(tetrathiafulvalene)-1,3,5-Triazines as Covalently Linked Donor-Acceptor Systems: Structural, Spectroscopic, and Theoretical Investigations
    F. Riobé, P. Grosshans, H. Sidorenkova, M. Geoffroy and N. Avarvari
    Chemistry - A European Journal, 15 (2) (2009), p380-387
    DOI:10.1002/chem.200801851 | unige:3558 | Abstract | Article HTML | Article PDF
Reaction of 2,4,6-trichloro-1,3,5-triazine with lithiated tetrathiafulvalene (TTF) in stoichiometric conditions, followed by treatment with sodium methanolate, provides mono- and bis(TTF)-triazines as new covalently linked (multi)donor-acceptor systems. Single-crystal X-ray analyses reveal planar structures for both compounds, with formation of peculiar segregated donor and acceptor stacks for the mono(TTF)-triazine compound, while mixed TTF-triazine stacks establish in the case of the bis(TTF) derivative. Cyclic voltammetry measurements show reversible oxidation of the TTF units, at rather low potential, with no splitting of the oxidation waves in the case of the dimeric TTF, whereas irreversible reduction of the triazine core is observed. Intramolecular charge transfer is experimentally evidenced through solution electronic absorption spectroscopy. Time-dependent DFT calculations allow the assignment of the charge transfer band to singlet transitions from the HOMO of the donor(s) to the LUMO of the acceptor. Solution EPR measurements correlated with theoretical calculations were performed in order to characterize the oxidized species. In both cases the spectra show very stable radical species and contain a triplet of doublet pattern, in agreement with the coupling of the unpaired electron with the three TTF protons. The dication of the bis(TTF)-triazine is paramagnetic, but no spin-spin exchange interaction could be detected.
  • Intramolecular Mixed-Valence State Through Silicon or Germanium Double Bridges in Rigid Bis(Tetrathiafulvalenes)
    F. Biaso, M. Geoffroy, E. Canadell, P. Auban-Senzier, E. Levillain, M. Fourmigué and N. Avarvari
    Chemistry - A European Journal, 13 (19) (2007), p5394-5400
    DOI:10.1002/chem.200700237 | unige:3592 | Abstract | Article HTML | Article PDF
 
The synthesis and characterization of two ortho-dimethyltetrathiafulvalene (o-DMTTF)-based rigid dimers containing dimethylsilicon (Me2Si) or dimethylgermanium (Me2Ge) linkers are described. Single-crystal X-ray analysis reveals planar geometry for the central 1,4-disilicon or 1,4-digermanium six-membered rings. DFT calculations provide optimized conformations in agreement with the experimental ones, and also emphasize the role of the heteroatomic linkers in the conjugation between the two redox active units. Cyclic voltammetry measurements show sequential oxidation into radical cation, and then dication species. Solution EPR measurements on the radical-cation species indicate full delocalization of the unpaired electron over both electroactive TTF units, with an associated coupling of 0.42 G with twelve equivalent protons. DFT calculations afford fully planar geometry for the radical-cation species and confirm the experimental isotropic coupling constant. Single-crystal X-ray analyses of two charge-transfer compounds obtained upon chemical oxidation, formulated as [(Me2Si)2(o-DMTTF)2]-1/2[TCNQ]·1/2[TCNQF4] and [(Me2Ge)2(o-DMTTF)2]·[TCNQ], demonstrate the occurrence of genuine mixed-valence radical-cation species, as well as a three-dimensional network of short S···S intermolecular contacts. Temperature-dependent conductivity measurements demonstrate semiconducting behavior for both charge-transfer compounds, with an increase of the absolute value of the conductivity upon applying external pressure. Band structure calculations reveal peculiar pseudo-two-dimensional electronic structures, also confirming electronic interactions through SiMe2 and GeMe2 bridges.
  • Tetrathiafulvalene-phosphine-based iron and ruthenium carbonyl complexes: Electrochemical and EPR studies
    C. Gouverd, F. Biaso, L. Cataldo, T. Berclaz, M. Geoffroy, E. Levillain, N. Avarvari, M. Fourmigué, F.X. Sauvage and C. Wartelle
    Physical Chemistry Chemical Physics, 7 (2005), p85-93
    DOI:10.1039/b409958c | unige:3282 | Abstract | Article HTML | Article PDF
The radical cation of the redox active ligand 3,4-dimethyl-3',4'-bis-(diphenylphosphino)-tetrathiafulvalene ( P2) has been chemically and electrochemically generated and studied by EPR spectroscopy. Consistent with DFT calculations, the observed hyperfine structure (septet due to the two methyl groups) indicates a strong delocalization of the unpaired electron on the central S2C=CS2 part of the tetrathiafulvalene (TTF) moiety and zero spin densities on the phosphine groups. In contrast with the ruthenium(0) carbonyl complexes of P2 whose one-electron oxidation directly leads to decomplexation and produces P2•+, one-electron oxidation of [Fe( P2)(CO)3] gives rise to the metal-centered oxidation species [Fe(I)( P2)(CO)3], characterized by a coupling with two 31P nuclei and a rather large g-anisotropy. The stability of this complex is however modest and, after some minutes, the species resulting from the scission of a P–Fe bond is detected. Moreover, in presence of free ligand, [Fe(I)( P2)(CO)3] reacts to give the complex [Fe(I)( P2)2(CO)] containing two TTF fragments. The two-electron oxidation of [Fe( P2)(CO)3] leads to decomplexation and to the P2•+ spectrum. Besides EPR spectroscopy, cyclic voltammetry as well as FTIR spectroelectrochemistry are used in order to explain the behaviour of [Fe( P2)(CO)3] upon oxidation. This behaviour notably differs from that of the Ru(0) counterpart. This difference is tentatively rationalized on the basis of structural arguments.
  • Formation and structure of Rh(0) complexes of phosphinine-containing macrocycles: EPR and DFT investigations
    L. Cataldo, S. Choua, T. Berclaz, M. Geoffroy, N. Mézailles, N. Avarvari, F. Mathey and P. Le Floch
    Journal of Physical Chemistry A, 106 (12) (2002), p3017-3022
    DOI:10.1021/jp014339z | unige:3227 | Abstract | Article HTML | Article PDF
Electrochemical and chemical reductions of Rh(I) complexes of LP4 (a macrocycle containing four phosphinine rings) and of LP2S2 (a macrocycle containing two phosphinine rings and two thiophene rings) lead, in liquid solution, to EPR spectra exhibiting large hyperfine couplings with 31P nuclei. An additional coupling (27 MHz) with 103Rh is detected, in the liquid state, for the spectrum obtained with [LP2S2Rh(0)]; moreover, resolved 31P hyperfine structure is observed in the frozen solution spectrum of this latter complex. DFT calculations performed on Rh(I) complexes of model macrocycles L‘P4 and L‘P2S2 indicate that, in these systems, the metal coordination is planar and that one-electron reduction induces a small tetrahedral distortion. The calculated couplings, especially the dipolar tensors predicted for [L‘P2S2Rh(0)], are consistent with the experimental results. Although the unpaired electron is mostly delocalized on the ligands, the replacement of two phosphinines by two thiophenes tends to increase the rhodium spin density (ÏRh =0.35 for [L‘P2S2Rh(0)]). It is shown that coordination to Rh as well as one-electron reduction of the resulting complex provoke appreciable changes in the geometry of the macrocycle.
A "CO-like matrix", showing coordination analogous to that of carbonyl groups, is provided by silacalix[4]phosphinine macrocycles. Reaction with AuI leads to the first gold(I) complexes of macrocycles, which can be reduced with sodium or potassium to the paramagnetic gold(0) complexes (an example is shown), as evidenced by cyclic voltammetry and EPR spectroscopy.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024